Fractional white-noise limit and paraxial approximation for waves in random media Christophe Gomez, Aix Marseille University

In this talk we will discuss the asymptotic analysis of high frequency wave propagation in random media with long-range dependence. We present two asymptotic regimes that we investigate simultaneously: the paraxial approximation, where the wave is collimated and propagates along a privileged direction of propagation, and the white-noise limit, where random fluctuations in the background are well approximated in a statistical sense by a fractional white noise. The fractional nature of the fluctuations is reminiscent of the long-range correlations in the underlying random medium. Starting from the high frequency wave equation with fast non-Gaussian random oscillations in the velocity field, we derive the fractional Itô-Schrödinger equation, that is a stochastic Schrödinger equation with a potential given by a fractional white noise.